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Scattering rates versus moments: Alternative Grad equations
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Scattering ratemoments of collision integrabre treated as independent variables, and as an alternative to
moments of the distribution function, to describe the rarefied gas near local equilibrium. A version of the
entropy maximum principle is used to derive the Grad-like description in terms of a finite number of scattering
rates. The equations are compared to the Grad moment system in the heat nonconductive case. Estimations for
hard spheres demonstrate, in particular, some 10% excess of the viscosity coefficient resulting from the
scattering rate description, as compared to the Grad moment estinj&i@63-651X96)51310-3

PACS numbsg(s): 05.60+w, 05.70.Ln, 51.10ty, 51.20+d

The classical Grad moment methpt] provides an ap- description in terms of the scattering ratd$’ (1) is alterna-
proximate solution to the Boltzmann equation, and leads to &ve to the usually treated description in terms of the mo-
closed system of equations where hydrodynamic variablementsM: Mi1i2i3(f)=f,uili2i3fdv.

p, u, andP (density, mean flux, and pressugge coupled to A reason to consider scattering rates instead of the mo-
a finite set of nonhydrodynamic variables. The latter are usuments is thatv" (1) reflect features of the interactions be-
ally the stress tensar and the heat flux constituting ten-  cause of thew incorporated in their definition, while the
and thirteen-moment Grad systems. The Grad method Wagoments do not. For this reason we can expect that, in gen-
originally introduced for diluted gases to describe regimesera|, a description with finite number of scattering rates will
beyond the normal solutioni?], but later it was used, in  pe more informative than a description provided by the same
particular, as a prototype of certain phenomenologicahymber of their moment counterparts.

schemes in nonequilibrium thermodynamicd. Recently To come to the Grad-like equations in terms of the scat-
the Grad equations were used to obtain examples of exagring rates, we have to complete the following two steps:
summation of gradient expansions arising in the kinetic (i) To derive a hierarchy of transport equations foru,

theory[4]. _ _ P, andM, . in a neighborhood of the local Maxwell states
However, the moments do not constitute the unique sys: 128

tem of nonhydrodynamic variables, and the exact dynamicéO(‘.’.’u’P)' .

might be equally expressed in terms of other infinite sets of (ih) TO. truncqte this hierarchy, and to come to a closed set
variables(possibly, of a nonmoment natyreMoreover, as of equ:?mons with respect 0, u, P, and a finite number of
long as one shortens the description to only a finite subset gicattering rates.

variables, the advantage of the moment description above Inbthe fstep_(l)k;lwe dﬁ.”\ée. 6} desc”rlptlon_ W'lth tag f{ﬂf![n'tti
other systems is not obvious. number of variables, which is formally equivalent both to the

In this Rapid Communication we consider another Systenﬁoltzmann eq_uation hear the local equilibrium, and to the
of nonhydrodynamic variablesgattering rates M(f): description with an infinite number of moments. The ap-

proximation comes into play in the stéip) where we reduce
the description to a finite number of variables. The difference

M}’Zizis(f)= f Mili2i3QW(f)dVi between the moment and the alternative description occurs at
this point.
o mpiyizys 1 The program(i) _and (i) is similar tc_> what is .dqng in the
Mijinig= MU Va0, Grad method 1], with the only exceptiortand this is impor-

_ o tany that we should always use scattering rates as indepen-
which, by definition, are the moments of the Boltzmann col-gent variables and not to expand them into series in mo-

lision integralQ™(f): ments. Consequently, we will use a method of a closure in
the step(ii) that does not refer to the moment expansions.

QY(f)= f WV’ VLV V) (V) (V) Major steps of the compl_,ltatlon will be presented below.

To complete the stefi), we represent as fy(1+ ¢),

wheref is the local Maxwellian, and we linearize the scat-

—f(v)f(vy)}dv'dvidy;. tering rate(1) with respect togp:

Herew is the probability density of a change of the ve-
locities, (v,v1)—(Vv’,v}), of the two particles after their en- AM}AiiZiS(QD):f Apiiyifoedv;
counter, andv is defined by a model of pair interactions. The

Apiii, = L (tiigig)- 2
*Present address: Department of Mathematical Physics, Univer- HereL" is the usual linearized collision integral, divided
sity of UIm, Ulm, D-89069 Germany. by fo. ThoughAMY are linear ing, they are not moments
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because their microscopic densitigsy”, are not velocity instead of its scattering counterparf Then the resulting
polynomials for a general case wf. functionf* (p,u,P,o;;) will be exactly the ten-moment Grad

It is not difficult to derive the corresponding hierarchy of approximation. It can be shown that a choice of any finite set
transport equations for variablw\/liviizi3, p, U, andP (we  of higher moments as the constraiitin Eq. (4) results in

will further refer to this hierarchy as the alternative chain the corresponding Grad approximation. In that sense our
one has to calculate the time derivative of the scattering rate®ethod of constructing® is a direct generalization of the
(1) due to the Boltzmann equation, in the linear approxima-Grad method onto the alternative description.

tion (2), and to complete the system with the five known The Lagrange multipliers method gives straightforwardly
balance equations for the hydrodynamic moméststtering ~ the solution to the problertd). After the alternative chain is
rates of the hydrodynamic moments are equal to zero due @Josed with the function* (p,u,P,o7}), the steg(ii) is com-
conservation laws The structure of the alternative chain is pleted, and we arrive at a set of equations with respect to the
quite similar to that of the usual moment transport chainyvariables p, u, P, and aiVjV. Switching to the variable
and for this reason we do not reproduce it heetails of  {j; :n‘lo}’jv, we have

calculations can be found if5]). One should only keep in

mind that the stress tensor and the heat flux vector in the din+d;(ny;) =0; (53
balance equations far andP are not independent variables
anymore, and they are expressed in termsAM}’iizis, P,

u, andP.

To truncate the alternative chdistep(ii)], we have, first,
to choose a finite set of “essential” scattering ra(8s and 3 75(T)n
second, to obtain the distribution functions that depend para- 5 (P +UidiP)+ 5 Pdiui+| = w5 ik diu=0;
metrically only onp, u, P, and on the chosen set of scatter- (50)
ing rates. We will restrict our consideration to a single non-
hydrodynamic variableqr}’jv, which is the counterpart of the
stress tensow;; . This choice corresponds to the polynomial ikt ds(Uslik) +
mo;v; in the expressiongl) and(2), and the resulting equa-

76(T)N

p(dtUy+U;d;uy) + 9P+ 9; W(ik]=0; (5b)

2
gksﬂsui + gisasuk_ § 5ik§rs‘75ur]

tions will be alternative to the ten-moment Grad sys{éh 28% P2
: L : : 1 Y= — [ LikdsUs— —m—=— diUx+ dyy;
For a spherically symmetric interaction, the expression for pWo [ SikIsHs 2¥(Tn| % kT OkHi
ojj may be written as
2 w
- —5ikt95Us) ——ww— ¢ik=0. (5d)
7o) [ Aufopav 3 g (T)

Hered,=dl ot,d,= 9l 9x; , summation in two repeated indices
is assumed, and the coefficiemt$, 8, anda" are defined
with the aid of the functior8" (3) as follows:

Apfj=L"mojv))= S*(c®){cic;— 36;¢%. (3

75(T)
Here 5{(T) is the first Sonine polynomial approximation 8 ©

of the Chapman-Enskog viscosity coefficiéhC) [2], and, rw:_f e “c¥[S"(c?)]%dc; (6)

as usualc={Vm/2kT(v—u). The scalar dimensionless func- 15\/; 0

tion S" depends only ore?, and its form depends on the

choice of interactiorw. g 8 fw -
Next, we find the functions f*(p,u,P,0)) 157 Jo

=fo(p,u,P)[1+ cp*(p,u,P,a}Aj’)] which maximize the Bolt-

zmann entropys(f) in a neighborhood of (the quadratic 8 v,

approximation to the entropy is valid within the accuracy of a""=—f e °c®s"(c?)R"(c?)dc.

our consideratioy for fixed values ofaivjv. That is, ¢* is a 15\7Jo

solution to the following conditional variational problem:

dsY(c?)
d(c?)

c®c85%(c?) dc;

The functionR"(c?) in the last expression is defined due to
kg the action of the operatdr” on the functionS"(c?)(c;c;—

AS(¢e)=- J fop2dv— max, 15c?):

SW(cz)(cicj—%(sijCZH.
(7)

Finally, the parametey" in Eq. (5) reflects the temperature
dependence of the VC:

P 1
R e — 8502 = W
(I)j AM}’}'focpdvza"i'}'; (ii)f {1v,0%}foedv=0. (4) 778’R (c )(C|CJ 35”C ) L

The secondhomogeneoyscondition in Eq.(4) reflects that

a deviatione from the statef is due only to nonhydrody-

namic degrees of freedom, and it is straightforwardly satis

fied for Auj (3). 5
Notice, that if we turn to the usual moment description, ywz_[l

then condition(i) in Eq. (4) would fix the stress tensar;; 3

T (dmvyv(T)”
(M| dT ||
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TABLE |. Second virial coefficient for hard spheres.

Bexpt BO Beﬁ
Argon 8.4 60.9 50.5
Helium 10.8 219 18.2
Nitrogen 168 66.5 55.2

For Maxwellian molecules, we easily derive that the co-
efficient «™ in Eq. (10) is equal to3. Thus, as one expects,
the effective VC(10) is equal to the Grad value, which, in
turn, is equal to the exact value in the frames of the
Chapman-Enskog method for this model.

For all interactions that are different from the Maxwellian
molecules, the VCngy (10) is not equal ton; For hard
spheres, in particular, a computation of the VD) requires
information about the functioR™S (7). This is achieved

FIG. 1. Approximations for hard spheres: bold line, function upon a substitution of the functiogs (8) into Eq. (7). Fur-
S"S; solid line, approximatiors,®; dotted line, Grad moment ap- ther, we have to compute the action of the oper&até? on
proximation. the functionS"3(c;c; — 58;;¢?), which is rather complicated.

However, the VC7i? can be relatively easily estimated by

using a functiorS5=(1/,/2)(1+ ¢?), instead of the func-
tion S™S, in Eq. (7). Indeed, the functiosg'S is tangent to the
function S"S atc?=0, and is its majorantsee Fig. 1 Sub-
stituting S° into Eq. (7), and computing the action of the
Lollision integral, we find the approximatid®l;®; thereafter
we evaluate the integrait's (6), and finally come to the
following expression:

The set of ten equation(®) is alternative to the ten-moment
Grad equations.

The first observation to be made is that for Maxwellian
molecules we have SMM=1, and 7yM«T; thus
YMM=pMM =g MM= ,MM=1"and Eq.(5) becomes the
ten-moment Grad system under a simple change of variabl
Ngij=ai;, where is the proportionality coefficient in the
temperature dependence g™ .

These propertiegthe functionS" is a constant, and the 75 264
VC is proportional toT) are true only for Maxwellian mol- ﬂgﬁsz 57 237
ecules. For all other interactions, the functi®8tis not iden-

. ki .
tical to 1, and the VCp,(T) is not proportional tdl. Thus, Thus, for hard spheres, the description in terms of scatter-

the shortened alternative description is not equivalent indeeﬁgg rates results in the VC of more than 10% higher than in
to the Grad moment description. In particular, for hardy,o Grad moment description.

spheres, the exact expression for the func0id (3) reads A discussion of the results concerns the following two

nhS~1.12953. (1)

items.
52 (1 (i) Having two descripti i i
HS_ 20N 4 AN a2a 42 g two descriptions that are not equivalent which
ST= 16 oexp( c)(1-tHe (A1) +2]dt, were obtained within one method, we may ask, which is
more relevant? A simple test is to compare characteristic
times of an approach to hydrodynamic regime. We have

6~ 75°/P for ten-moment description, ang,~ 75/ P for
alternative description. As,> 75, we see that scattering
rate decays slower than the corresponding moment; hence, at
least for rigid spheres, alternative description is more rel-
evant. For Maxwellian molecules both the descriptions are,
of course, equivalent.

(i) The VC ngﬁs (11) has the same temperature depen-
dence asngs, and also the same dependence on a scaling
parametefa diameter of the spherdn [7], “sizes” of mol-
ecules are presented, assuming that a molecule is represented
with an equivalent sphere and VC is estimated;§3. Since
our estimation of VC differs only by a dimensionless factor
af_rom 7;33, it is straightforward to conclude that effective
ec,izes of molecules will be reduced by the fadborwhere

Thus, ¥"S=1, and g"S/r"$~0.07, and the equation for
the function;, (5d) contains a nonlinear term,

0Hsgikﬁsus- (9)

where 6"5~0.19. This term is missed in the Grad ten-
moment equation.

Finally, let us evaluate the VC which results from the
alternative descriptiori5). Following Grad’s argumentgl],
we see that, if the relaxation @f, is fast compared to the
hydrodynamic variables, then the two last terms in the equ
tion for ¢ (5) become dominant, and the equation for
casts into the standard Navier-Stokes form with an effectiv

W,
VC % b= 7% He~0.94.

wo_ w (10 Further, it is well known that sizes of molecules estimated
Meif =5 qw 0 - via viscosity in[7] disagree with the estimation via the virial
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expansion of the equation of state. In particular[8h the  rameters of the LJ potential0]. We may expect that a di-
measured second virial coefficieB,, was compared with mensionless correction of the VC for the LJ potential might
the calculated3,, in which the diameter of the sphere was be of the same order as above for rigid spheres. However, the

taken from the viscosity data. The reduction of the diametefunctional character of the temperature dependence will not
by factorb givesB.s=b°B,. The valuesB,,, andB, [8] are be affected, and a fit will be obtained subject to a different

compared withB. in Table | for three gases =500 K. ~ choice of the molecular parameters of the LJ potential.
The results for argon and helium are betterBgg, while for There remains, however, a general question how the esti-

nitrogenB. is worse tharB,. However, bottB, andB, are ~ mation of the VC(10) responds to the exact valyg,11].
far from the experimental values. Since the analysis performed above does not immediately

Hard spheres is, of course, an oversimplified model Ofappeal to the exact Chapman-Enskog expressions just men-

interaction, and the comparison presented does not allow f&oned, this question remains open for a further work.

a decision betweem}® and 757 Nevertheless, this simple ~ We acknowledge the useful comments of Dr. G. Dukek.
example illustrates to what extent the correction to the VQOne of the author§l.V.K.) is grateful to Professor J. Casas-
can affect a comparison with experiment. Indeed, as is welVazquez and Professor D. Jou for a discussion of results and
known, the first-order Sonine polynomial computation forthanks Professor T. Nonnenmacher and the Alexander von
the Lennard-Joned.J) potential gives a very good fit of the Humboldt Foundation for a possibility of a research stay at
temperature dependence of the VC for all noble gd8és the University of Ulm. This work was supported in part by
subject to a proper choice of the two unknown scaling pathe RFBR Grant No. 95-02-03836-a.

[1] H. Grad, Comm. Pure Appl. Matf2, 331(1949. [7] S. Chapman and T. Cowling, Ré&], pp. 228—229.

[2] S. Chapman and T. Cowlindflathematical Theory of Non-  [8] J. O. Hirschfelder, C. F. Curtiss and R. B. Bislolecular
uniform GasegUniversity Press, Cambridge, 1970 Theory of Gases and LiquidsViley, New York, 1954, p. 5.

[3] D. Jou, J. Casas-\#guez, and G. Lebon, Rep. Progr. PHys. [9] J. Dorfman and H. van Beijeren, iBtatistical Mechanics B
1104 (1988; D. Jou, J. Casas-Vauez, and G. LeborEx- edited by B. BernéPlenum, New York, 1977 p. 113.
tended Irreversible Thermodynami(Springer, Berlin, 1998 [10] A comparison of molecular parameters of the LJ potential, as

[4] A. Gorban and I. Karlin, Phys. Rev. Left7, 282 (1996. derived from the viscosity data, to those obtained from inde-

[5] A. Gorban and I. KarlinNew Methods for Solving the Boltz- pendent sources, can be found elsewhere, e.g., S. Chapman
mann EquationsAMSE Press, Tassin, 1994 and T. Cowling in Ref[2], p. 237.

[6] To get the alterngtlve to the thlrteen-moment Grad equatlonsfll] P. Rasibois and M. De LeeneiClassical Kinetic Theory of
one should take into account the scattering counterpart of the Fluids (Wiley, New York, 1977

heat flux,q"=mfv;(v2/2)Q "*(f)dv.



